Saltar al contenido
  • YouTube
  • TikTok
  • Facebook
  • Twitter
  • Instagram
  • Pinterest
  • Telegram
Quimicafacil.net

Quimicafacil.net

Experimentos, historia, datos curiosos y más

  • Temas
    • Teorías y modelos atómicos
    • Sistemas de medidas
    • Mujeres en la historia de la química
    • Material de laboratorio
    • Biografias
    • IUPAC
    • Efemérides
  • Laboratorio
    • Técnicas de laboratorio
    • Manual de laboratorio
      • Demostración
      • Química general – básica
      • Química analítica
      • Química Inorgánica
      • Química Orgánica
      • Bioquímica
      • Electroquímica
      • Fisicoquímica
      • Química instrumental
  • Secciones
    • Compuesto de la semana
    • Ciencia y arte
    • Tablas Periódicas
    • Trucos, consejos y tips
    • Curiosidades de la química
    • Notas de química
    • Software
  • Humor
    • Archivo memes y humor 2021
    • Archivo memes y humor 2020
    • Archivo memes y humor 2019
  • Acerca de
    • ¿Que es quimicafacil.net?
    • Donaciones
    • Colaboraciones
    • Política de privacidad y cookies
  • Alternar formulario de búsqueda

Categoría: Infografías

Una infografía trasmite información de manera concisa. Aquí encontraras infografías sobre diversos temas de la química y las ciencias

Balón de Kjeldahl

Publicado el junio 10, 2019mayo 22, 2023 Por admin
Balón de Kjeldahl

Tiempo de lectura estimado: 5 minutos

El balón de Kjeldahl es un recipiente de fondo redondo abombado y cuello largo, empleado para realizar la digestión de la muestra según la técnica de Kjeldahl para cantidad de nitrógeno

Una pieza de vidrio moderna con raíces en la industria cervecera es el matraz Kjeldahl, de fondo redondo y cuello largo para atrapar las salpicaduras del material que se está hirviendo para su análisis. Fue ideado por Johan Gustav Kjeldahl para resolver un problema relacionado con la cerveza.

En la década de 1870, la cervecería de Carlsberg en Dinamarca era propiedad y estaba dirigida con mucho éxito por J C Jacobsen, un hombre de gran cultura y perspicacia que quería que la ciencia más reciente informara y guiara su negocio. Inspirado en parte por la labor de Louis Pasteur en París, creó una fundación, en cuyo centro se encontraba un laboratorio dedicado a la investigación básica. Necesitando un químico, contrató al joven Kjeldahl.

  • El análisis del nitrógeno, un desafio
  • El método de Kjeldahl
    • Presentando el método de Kjeldahl al mundo

El análisis del nitrógeno, un desafio

Nacido en 1849 en Jaegerspris, Copenhague, Kjeldahl había estudiado en el Real Politécnico de Copenhague antes de convertirse en asistente del amigo de Jacobsen, C T Barfoed, en el Real Colegio Agrícola, en 1873. En su nuevo puesto, Kjeldahl pronto se interesó por el contenido de proteínas de los granos utilizados en la industria cervecera – mediciones que en esencia significaban averiguar cuánto nitrógeno contenían sus muestras.

A mediados del siglo XIX, si se quería determinar la relación C:H:N de un compuesto orgánico, entonces el análisis de combustión era el único juego en la ciudad. Gay-Lussac y Liebig habían perfeccionado este arte para determinar el contenido de carbono e hidrógeno, midiendo el dióxido de carbono y el agua producidos cuando un compuesto se quemaba con óxido de cobre.

Sistema de digestión con balones kjeldahl
Sistema de digestión con balones kjeldahl

El nitrógeno, sin embargo, era un cliente más complicado: la combustión incompleta producía óxidos de nitrógeno, y la contaminación por aire siempre era una preocupación. El gran rival analítico de Liebig, Dumas, purgó todo su aparato con dióxido de carbono antes de quemar la muestra, y recogió burbujas de nitrógeno sobre el mercurio. El método era complicado y laborioso. 

En lugar de recolectar gas de nitrógeno, los químicos analíticos posteriores prefirieron determinar el contenido de nitrógeno convirtiéndolo cuantitativamente en amoníaco. En 1841 dos de los estudiantes de Liebig, Will y Varrentrapp, desarrollaron un método en el que el compuesto orgánico se pirolizaba directamente con un álcali, liberando amoníaco que se convertía en iones de amonio, se precipitaba en forma de sal y se pesaba.

El método de Kjeldahl

Cuando Kjeldahl comenzó a trabajar en las proteínas de la cebada, este método aún se estaba desarrollando con fuerza, pero era completamente inadecuado para su proyecto, que requería muchos análisis en serie. Kjeldahl necesitaba un método que evitara completamente la combustión.

Al digerir sus muestras en ácido sulfúrico concentrado en presencia de permanganato, descubrió que podía generar iones de amonio cuantitativamente. La solución fue entonces diluida y transferida a un simple aparato de destilación que incluía el matraz de cuello largo que vino a llevar su nombre. Al añadir el álcali se liberó el amoníaco, que se destiló directamente de un condensador en ácido estándar. Una serie de aditivos y catalizadores mejoraron el proceso, que hoy en día está mayormente automatizado.

Presentando el método de Kjeldahl al mundo

Kjeldahl incluyó su método en el informe anual de Carlsberg de 1882-83 y lo presentó a la Fundación Química Danesa en marzo de 1883. William Crookes lo reportó con entusiasmo en su Chemical News en agosto y el método se puso de moda rápidamente. En el Journal of Analytical Chemistry el analista L F Kebler comentó que «ningún método ha sido adoptado tan universalmente, en tan poco tiempo, como el método de Kjeldahl». 

El mismo Kjeldahl siguió trabajando en su laboratorio perfeccionando otras técnicas y supervisando el diseño de un nuevo laboratorio. Nunca se casó, y murió de una hemorragia cerebral mientras nadaba en el mar en 1900. 

El hecho de que fuera sucedido en el laboratorio de Carlsberg por S P L Sorensen, quien inventó la escala de pH, hace que uno se pregunte dónde estaría la humanidad si más cervecerías tomaran una visión tan iluminada de sus beneficios.

En la década de 1960, con el advenimiento de la cromatografía de gases, el método de combustión de Dumas para recoger el gas nitrógeno volvió con fuerza. Pero Carlsberg podía decir con orgullo que por casi un siglo Kjeldahl había sido el mejor método analítico del mundo.

Para más información Classic Kit: Kjeldahl flask

  • Johan Kjeldahl
  • Aislamiento del nitrógeno
  • Técnicas de laboratorio
  • Óxido de nitrógeno (I)
  • Triyoduro de nitrógeno

Como citar este artículo:

APA: (2019-06-10). Balón de Kjeldahl. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/

ACS: . Balón de Kjeldahl. https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/. Fecha de consulta 2025-10-23.

IEEE: , "Balón de Kjeldahl," https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/, fecha de consulta 2025-10-23.

Vancouver: . Balón de Kjeldahl. [Internet]. 2019-06-10 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/.

MLA: . "Balón de Kjeldahl." https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/. 2019-06-10. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Bomba de Sprengel

Publicado el junio 3, 2019mayo 22, 2023 Por admin
Bomba de Sprengel

Tiempo de lectura estimado: 4 minutos

La bomba de Sprengel fue el primer aparato desarrollado para obtener alto vacío (<1*10-8 atm). Su inventor fue el químico alemán Hermann Sprengel. Funciona bajo el principio de tromba, que consiste en una corriente de líquido que arrastra consigo aire y genera un vacío parcial

La bomba Sprengel es una bomba de vacío que utiliza las gotas de mercurio que caen a través de un tubo capilar de pequeño diámetro para atrapar el aire del sistema a evacuar. Fue inventada por el químico Hermann Sprengel, nacido en Hannover, en 1865, mientras trabajaba en Londres. La bomba creó el mayor vacío alcanzable en ese momento, menos de 1 mPa (aproximadamente 1×10-8 atm).

  • Funcionamiento de la bomba de Sprengel
  • Aplicaciones

Funcionamiento de la bomba de Sprengel

Como el propio Sprengel explicó su bomba de vacío era una modificación del » trombo» (o «trombe»), que se conocía en Europa al menos desde el siglo XVI. En un trompo, el agua cae de un depósito a través de una tubería. El extremo superior del tubo está cerrado excepto por un conjunto de tubos de pequeño diámetro, cada uno de los cuales está abierto al aire en un extremo y que se sumerge bajo el agua en su otro extremo.

Diagrama de la bomba de Sprengel
Diagrama de una bomba de Sprengel

A medida que el agua cae, arrastra el aire de los tubos. El agua lleva el aire al fondo del tubo, donde el aire se acumula en un depósito a alta presión. El trampantojo se usaba para producir un flujo constante de aire para la fundición y la elaboración de metales, entre otros usos. Sprengel simplemente conectó un tubo al extremo superior de la tubería con el fin de utilizar el flujo de líquido para evacuar un recipiente

El suministro de mercurio está contenido en el depósito de la izquierda. Fluye hacia el bulbo B, donde forma gotas que caen en el largo tubo de la derecha. Estas gotas atrapan entre ellas el aire en B. El mercurio que se agota se recoge y se vierte de nuevo en el depósito de la izquierda. De esta manera se puede extraer prácticamente todo el aire del bulbo B, y por lo tanto de cualquier recipiente R, que puede estar conectado con el B. En el M hay un manómetro que indica la presión en el recipiente R, que se está agotando.

Las gotas de mercurio que caen comprimen el aire hasta la presión atmosférica que se libera cuando la corriente llega a un recipiente en el fondo del tubo. A medida que la presión disminuye, el efecto de amortiguación del aire atrapado entre las gotas disminuye, por lo que se puede escuchar un martilleo o golpeteo, acompañado de destellos de luz dentro del recipiente evacuado debido a los efectos electrostáticos sobre el mercurio.

La velocidad, simplicidad y eficiencia de la bomba Sprengel la convirtió en un dispositivo popular entre los experimentadores. El primer modelo de Sprengel podía evacuar un recipiente de medio litro en 20 minutos.

Aplicaciones

William Crookes usó las bombas en serie en sus estudios de las descargas eléctricas. William Ramsay las usó para aislar los gases nobles, y Joseph Swan y Thomas Edison las usaron para evacuar sus nuevas lámparas de filamento de carbono. La bomba Sprengel fue la herramienta clave que hizo posible en 1879 agotar suficientemente el aire de una bombilla para que una bombilla eléctrica incandescente de filamento de carbono durara lo suficiente para ser comercialmente práctica. El propio Sprengel pasó a investigar los explosivos y finalmente fue elegido miembro de la Royal Society.

Para más información Classic Kit: Sprengel pump | Opinion | Chemistry World

  • La química de las bombas de baño
  • Bomba de Schlenk
  • Balón de Schlenk
  • Balón Straus

Como citar este artículo:

APA: (2019-06-03). Bomba de Sprengel. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/

ACS: . Bomba de Sprengel. https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/. Fecha de consulta 2025-10-23.

IEEE: , "Bomba de Sprengel," https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/, fecha de consulta 2025-10-23.

Vancouver: . Bomba de Sprengel. [Internet]. 2019-06-03 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/.

MLA: . "Bomba de Sprengel." https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/. 2019-06-03. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Lars Fredrik Nilson

Publicado el mayo 27, 2019enero 10, 2024 Por admin
Lars Fredrik Nilson

Lars Fredrik Nilson (27 de mayo de 1840 – 14 de mayo de 1899) fue un químico sueco que descubrió el elemento escandio en 1879. Infancia y educación Nilson nació en la localidad de Skönberga en Östergötland, Suecia. Su padre, Nikolaus, era granjero. La familia se mudó a Gotland cuando Lars Fredrik era joven. Después…

Leer más “Lars Fredrik Nilson” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Biografias, Infografías

Balón Straus

Publicado el mayo 20, 2019enero 10, 2024 Por admin
Balón Straus

Tiempo de lectura estimado: 3 minutos

Balón Straus, también llamado matraz Straus, es una variación de la bomba de Schlenk, desarrollada por la Kontes Glass Co. Se emplea generalmente para almacenar solventes secos y desgasificados en el manejo de sustancias y reacciones sensibles al aire

  • Estructura de un balón Straus

Un matraz o balón Straus (a menudo mal escrito «Strauss») es una subclase de matraz «bomba» desarrollado originalmente por la Kontes Glass Company, comúnmente usado para almacenar disolventes secos y desgasificados.

Los balones Straus se denominan a veces bombas de disolvente, nombre que se aplica a cualquier bomba Schlenk dedicada a almacenar disolvente. Los frascos Straus se diferencian principalmente de otras «bombas» por la estructura de su cuello.

Estructura de un balón Straus

Detalle del cuello de un balón Straus
Detalle del cuello de un balón Straus

Dos cuellos emergen de un balón de fondo redondo, uno más grande que el otro. El cuello más grande termina en una junta de vidrio esmerilado y está permanentemente dividido por el vidrio soplado del acceso directo al matraz. El cuello más pequeño incluye la rosca necesaria para atornillar un tapón de teflón en forma perpendicular al frasco.

Dibujo balón Straus

Los dos cuellos se unen a través de un tubo de vidrio. La unión de vidrio soplado puede conectarse a un colector directamente o a través de un adaptador y una manguera. Una vez conectado, la válvula del tapón puede abrirse parcialmente para permitir que el disolvente del balón Straus se transfiera al vacío a otros recipientes. O, una vez conectado a la línea, el cuello puede ser colocado bajo una presión positiva de gas inerte y la válvula del tapón puede ser totalmente removida.

Esto permite el acceso directo al matraz a través de un estrecho tubo de vidrio ahora protegido por una cortina de gas inerte. El disolvente entonces puede ser transferido a través de la cánula a otro matraz. Por el contrario, otros tapones de matraz de bomba no están necesariamente situados de manera ideal para proteger la atmósfera del balón de la atmósfera externa.

Para más información AF-0525 – FLASKS, STORAGE, STRAUS, AIRFREE

  • Bomba de Schlenk
  • La química de las bombas de baño
  • Balón de Schlenk
  • Línea de Schlenk
  • Cromatografía en tapón de sílica

Como citar este artículo:

APA: (2019-05-20). Balón Straus. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/

ACS: . Balón Straus. https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/. Fecha de consulta 2025-10-23.

IEEE: , "Balón Straus," https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/, fecha de consulta 2025-10-23.

Vancouver: . Balón Straus. [Internet]. 2019-05-20 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/.

MLA: . "Balón Straus." https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/. 2019-05-20. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Johannes Thiele

Publicado el mayo 13, 2019enero 10, 2024 Por admin
Johannes Thiele

Tiempo de lectura estimado: 3 minutos

Friedrich Karl Johannes Thiele (13 de mayo de 1865 – 17 de abril de 1918) fue un químico alemán y un destacado profesor en varias universidades, incluidas las de Múnich y Estrasburgo.

Desarrolló muchas técnicas de laboratorio relacionadas con el aislamiento de compuestos orgánicos. En 1907 describió un dispositivo para la determinación precisa de los puntos de fusión, dispositivo que ahora lleva su nombre (tubo de Thiele).

Thiele nació en Ratibor, Prusia, ahora Racibórz, Polonia. Thiele estudió matemáticas en la Universidad de Breslau, pero luego se dedicó a la química y recibió su doctorado de Halle en 1890. Enseñó en la Universidad de Munich desde 1893 hasta 1902, cuando fue nombrado profesor de química en Estrasburgo.

Retrato de Johannes Thiele, 1890
Retrato de Johannes Thiele, 1890

Desarrolló la preparación de glioxal bis (guanilhidrazona).

Después de la propuesta de Kekulé para la estructura de benceno en 1865, Thiele sugirió una «Hipótesis de valencia parcial», que se refería a enlaces carbono-carbono dobles y triples con los que explica su particular reactividad.

En 1899 esto condujo a la predicción de la resonancia que existía en el benceno, y propuso una estructura de resonancia, usando un círculo roto para representar los enlaces parciales. Más tarde, este problema se resolvió por completo con el advenimiento de la teoría cuántica.

En 1899, Thiele fue jefe de Química Orgánica en la Academia de Ciencias de Baviera en Múnich. Con su asociado Otto Holzinger, sintetizó un núcleo de

Estructura del iminodibencilo
Estructura del iminodibencilo

: dos anillos de benceno unidos entre sí por un átomo de nitrógeno y un puente de etileno.

Descubrió la condensación de cetonas y aldehídos con ciclopentadieno como una ruta para la síntesis de los fulvenos. También reconoció que estas especies profundamente coloreadas estaban relacionadas con estructuras isoméricas de derivados del benceno.

Según uno de sus estudiantes, Heinrich Otto Wieland, a Thiele no le gustaba la química de los productos naturales.

Para más información On This Day – May 13 : Johannes Thiele was born

  • Tubo de Thiele
  • Determinación del punto de fusión – método de Thiele
  • Johannes Nicolaus Brønsted

Como citar este artículo:

APA: (2019-05-13). Johannes Thiele. Recuperado de https://quimicafacil.net/infografias/biografias/johannes-thiele/

ACS: . Johannes Thiele. https://quimicafacil.net/infografias/biografias/johannes-thiele/. Fecha de consulta 2025-10-23.

IEEE: , "Johannes Thiele," https://quimicafacil.net/infografias/biografias/johannes-thiele/, fecha de consulta 2025-10-23.

Vancouver: . Johannes Thiele. [Internet]. 2019-05-13 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/biografias/johannes-thiele/.

MLA: . "Johannes Thiele." https://quimicafacil.net/infografias/biografias/johannes-thiele/. 2019-05-13. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Biografias

Victor Grignard

Publicado el mayo 6, 2019enero 10, 2024 Por admin
Victor Grignard

Tiempo de lectura estimado: 4 minutos

François Auguste Victor Grignard (6 de mayo de 1871 en Cherburgo – 13 de diciembre de 1935 en Lyon) fue un químico francés ganador del Premio Nobel.

  • Vida de Victor Grignard
  • Reactivo de Grignard
  • Pasos de la reacción de Grignard

Vida de Victor Grignard

Grignard era hijo de un fabricante de velas. Su personaje fue descrito como humilde y amigable. Después de intentar especializarse en matemáticas, Grignard suspendió sus exámenes y se alistó en el ejército en 1892.

Después de un año de servicio, volvió a estudiar matemáticas en la Universidad de Lyon y finalmente obtuvo su título de Licenciado en Ciencias Matemáticas en 1894. En diciembre del mismo año, se transfirió a química y comenzó a trabajar con los profesores Philippe Barbier (1848-1922) y Louis Bouveault (1864-1909).

Victor Grignard trabajó muy de cerca con Philippe Barbier y su investigación se centró en compuestos de organomagnesio. Buscaron sintetizar alcoholes a partir de haluros de alquilo, aldehídos, cetonas y alquenos.

Estampilla conmemorativa del primer día de emisión de un sello en honor a Victor Grignard
Estampilla conmemorativa del primer día de emisión de un sello en honor a Victor Grignard

Un par de años después, Grignard hizo un descubrimiento notable. Había calentado una mezcla de tiras de magnesio, yoduro de isobutilo, y añadió éter etílico seco a la mezcla y se observó una reacción.

Reactivo de Grignard

El producto se conoce como reactivo de Grignard. El nombre de este compuesto de organo-magnesio (R-MgX) (R = alquilo; X = halógeno) reacciona fácilmente con cetonas, aldehídos y alquenos para producir sus respectivos alcoholes con rendimientos impresionantes.

Grignard había descubierto la reacción sintética que ahora lleva su nombre (la reacción de Grignard) en 1900. En 1901, Grignard publicó su tesis doctoral titulada «Thèses sur les combinaisons organomagnesiennes mixtes et leur application à des synthèses d’acides, d’alcools et d‘hydrocarbures”.

Se convirtió en profesor en la Universidad de Nancy en 1910. Ese mismo año, él y Paul Sabatier (1854-1941) recibieron el Premio Nobel de Química en 1912. Durante la Primera Guerra Mundial estudió compuestos para su uso en de guerra química, particularmente la fabricación de fosgeno y la detección de gas mostaza. Su contraparte en el lado alemán fue otro químico ganador del Premio Nobel, Fritz Haber.

Medalla conmemorativa premio Nobel de Victor Grignard 1934
Medalla conmemorativa premio Nobel de Victor Grignard 1934

Grignard es más conocido por diseñar un nuevo método para generar enlaces carbono-carbono utilizando magnesio para acoplar cetonas y haluros de alquilo.

Pasos de la reacción de Grignard

Esta reacción es valiosa en síntesis orgánica. Ocurre en dos pasos:

  1. Formación

    Formación del «reactivo de Grignard», que es un compuesto de organomagnesio hecho por la reacción de un organohaluro, R-X (R = alquilo o arilo; y X es un haluro, generalmente bromuro o yoduro) con magnesio metálico. El reactivo de Grignard generalmente se describe con la fórmula química general R-Mg-X, aunque su estructura es más compleja.

  2. Adición

    Adición del carbonilo, en el que se agrega una cetona o un aldehído a la solución que contiene el reactivo de Grignard. El átomo de carbono que está unido al Mg se transfiere al átomo de carbono de carbonilo, y el oxígeno del carbono de carbonilo se une al magnesio para dar un alcóxido.

  3. Finalización

    El proceso es un ejemplo de una adición nucleofílica a un carbonilo. Después de la adición, la mezcla de reacción se trata con ácido acuoso para dar un alcohol, y las sales de magnesio se descartan posteriormente.

Para más información Victor Grignard – The Nobel Prize

  • Aparato de Victor Meyer
  • Victor Moritz Goldschmidt
  • Ferroceno
  • Análisis e identificación de aldehídos y cetonas
  • Fritz Haber

Como citar este artículo:

APA: (2019-05-06). Victor Grignard. Recuperado de https://quimicafacil.net/infografias/biografias/victor-grignard/

ACS: . Victor Grignard. https://quimicafacil.net/infografias/biografias/victor-grignard/. Fecha de consulta 2025-10-23.

IEEE: , "Victor Grignard," https://quimicafacil.net/infografias/biografias/victor-grignard/, fecha de consulta 2025-10-23.

Vancouver: . Victor Grignard. [Internet]. 2019-05-06 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/biografias/victor-grignard/.

MLA: . "Victor Grignard." https://quimicafacil.net/infografias/biografias/victor-grignard/. 2019-05-06. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Biografias

Bomba de Schlenk

Publicado el abril 29, 2019enero 10, 2024 Por admin
Bomba de Schlenk

Tiempo de lectura estimado: 3 minutos

  • Descripción
  • Usos de la bomba de Schlenk

La bomba de Schlenk se diferencia de otros instrumentales desarrollados por Schlenk porque solo tiene una apertura controlada por una llave de tornillo.

Descripción

Un balón o matraz «bomba» es una subclase del matraz Schlenk que incluye todos los matrazes que tienen una sola abertura a la que se accede abriendo una válvula de tapón de teflón.

Este diseño permite que una bomba Schlenk sea sellada más completamente que un matraz Schlenk estándar, incluso si su septo o tapa de vidrio está conectado. Las bombas de Schlenk incluyen formas estructuralmente sólidas como fondos redondos y tubos de paredes pesadas.

Los balones de Schlenk se utilizan a menudo para llevar a cabo reacciones a elevadas presiones y temperaturas como un sistema cerrado. Además, todas las bombas de Schlenk están diseñadas para soportar el diferencial de presión creado por la antecámara cuando se bombean disolventes a una guantera.

Usos de la bomba de Schlenk

En la práctica, las bombas de Schlenk pueden realizar muchas de las funciones de un matraz de Schlenk estándar. Incluso cuando la abertura se utiliza para ajustar una bomba a un colector, el tapón se puede quitar para añadir o quitar material de la bomba.

Sin embargo, en algunas situaciones, las bombas de Schlenk son menos convenientes que los frascos estándar de Schlenk: carecen de una junta de vidrio esmerilado accesible para acoplar aparatos adicionales; la abertura que proporcionan las válvulas de los tapones puede ser de difícil acceso con una espátula, y puede ser mucho más sencillo trabajar con un tabique diseñado para encajar una junta de vidrio esmerilado que con un tapón de teflón.

El nombre de «bomba» se aplica a menudo a los contenedores utilizados bajo presión, como el calorímetro de una bomba. Si bien el vidrio no iguala el índice de presión y la resistencia mecánica de la mayoría de los recipientes metálicos, tiene varias ventajas.

El vidrio permite la inspección visual de una reacción en curso, es inerte a una amplia gama de condiciones y sustratos de reacción, es generalmente más compatible con los vidrios comunes de laboratorio y es más fácil de limpiar y comprobar su limpieza.

Para más información Schlenk Tube Technique

  • Balón de Schlenk
  • Línea de Schlenk
  • La química de las bombas de baño
  • Bomba de Sprengel
  • Balón Straus

Como citar este artículo:

APA: (2019-04-29). Bomba de Schlenk. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-schlenk/

ACS: . Bomba de Schlenk. https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-schlenk/. Fecha de consulta 2025-10-23.

IEEE: , "Bomba de Schlenk," https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-schlenk/, fecha de consulta 2025-10-23.

Vancouver: . Bomba de Schlenk. [Internet]. 2019-04-29 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-schlenk/.

MLA: . "Bomba de Schlenk." https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-schlenk/. 2019-04-29. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Balón de Schlenk

Publicado el abril 22, 2019enero 10, 2024 Por admin
Balón de Schlenk

Balón de Schlenk, también llamado matraz de Schlenk, es un recipiente de fondo redondo o forma de pera con una junta esmerilada en la parte superior y un brazo lateral de menor diámetro con una llave de paso de vidrio o teflón. ¿Que es un balón de Schlenk? Un matraz, balón de Schlenk, o tubo…

Leer más “Balón de Schlenk” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Línea de Schlenk

Publicado el abril 15, 2019enero 10, 2024 Por admin
Línea de Schlenk

Tiempo de lectura estimado: 5 minutos

La línea de Schlenk hace parte de los equipos de laboratorio desarrollados por Wilhelm Johann Schlenk, químico alemán, a inicios del siglo XX para sus investigaciones en química organometálica

  • Línea de Schlenk
  • Técnicas de uso de la linea de Schlenk
  • Peligros

Línea de Schlenk

La línea de Schlenk (también llamado colector de gas al vacío) es un aparato químico de uso común desarrollado por Wilhelm Schlenk. Consiste en un colector doble con varios puertos. Un colector está conectado a una fuente de gas inerte purificado, mientras que el otro está conectado a una bomba de vacío.

La línea de gas inerte se ventila a través de un burbujeador de aceite, mientras que los vapores de disolvente y los productos de reacción gaseosa se evita que contaminen la bomba de vacío mediante una trampa fría de nitrógeno líquido o hielo seco/acetona.

Llaves de paso especiales o grifos de teflón permiten seleccionar el vacío o el gas inerte sin necesidad de colocar la muestra en una línea separada.

  • Configuración del colector de vacío/gas: 1 entrada de gas inerte, 2 salida de gas inerte (al burbujeador), 3 vacío (a las trampas frías) 4 línea de reacción, 5 grifo de teflón al gas, 6 grifo de teflón al vacío
  • Configuración del colector de vacío/gas: 1 entrada de gas inerte, 2 salida de gas inerte (al burbujeador), 3 vacío (a las trampas frías), 4 línea de reacción, 5 llave de paso oblicua doble (es decir, un grifo de vidrio con 2 «canales/líneas» paralelos separados que corren en diagonal al eje del grifo)
  • Una suspensión amarilla se filtra a través de un embudo de vidrio sinterizado en otro frasco de Schlenk en condiciones de ausencia de aire.
  • Los dos reactivos para una reacción de aldol se preparan en frascos adyacentes, listos para que uno se transfiera al otro mientras se mantienen las condiciones de ausencia de aire.

Las líneas de Schlenk son útiles para manipular con seguridad y éxito los compuestos sensibles a la humedad y al aire. El vacío también se utiliza a menudo para eliminar los últimos restos de disolvente de una muestra. Los colectores de vacío y de gas suelen tener muchos puertos y líneas, y con cuidado es posible que se realicen varias reacciones u operaciones simultáneamente.

Cuando los reactivos son muy susceptibles a la oxidación, los rastros de oxígeno pueden plantear un problema. Entonces, para eliminar el oxígeno por debajo del nivel de ppm, es necesario purificar el gas inerte haciéndolo pasar a través de un catalizador de desoxigenación, que suele ser una columna de óxido de cobre(I) o de manganeso(II), que reacciona con las trazas de oxígeno presentes en el gas inerte.

Técnicas de uso de la linea de Schlenk

Las principales técnicas asociadas con el uso de una línea de Schlenk incluyen:

  • adiciones de contraflujo, donde se añaden reactivos estables al aire en el recipiente de reacción contra un flujo de gas inerte;
  • el uso de jeringas y septos de goma para transferir líquidos y soluciones;
  • transferencia de cánula, donde los líquidos o soluciones de reactivos sensibles al aire se transfieren entre diferentes vasos tapados con septos usando un tubo largo y delgado conocido como cánula. El flujo de líquido es soportado por el vacío o la presión del gas inerte.

Los objetos de vidrio suelen estar unidos por juntas de vidrio esmerilado bien ajustadas y engrasadas. Se pueden usar tubos de vidrio con juntas de vidrio esmerilado para ajustar la orientación de varios vasos.

La filtración en condiciones inertes plantea un desafío especial que se suele abordar con material de vidrio especializado. Un filtro Schlenk consiste en un embudo de vidrio sinterizado con juntas y llaves de paso.

Al colocar el embudo pre-secado y el matraz receptor en el matraz de reacción contra un flujo de nitrógeno, invirtiendo cuidadosamente el montaje y encendiendo el vacío adecuadamente, la filtración puede lograrse con una exposición mínima al aire.

Peligros

Los principales peligros asociados con el uso de una línea de Schlenk son los riesgos de una implosión o explosión. Una implosión puede ocurrir debido al uso del vacío y a los defectos del aparato de vidrio.

Una explosión puede ocurrir debido al uso común de nitrógeno líquido en la trampa fría, usada para proteger la bomba de vacío de los disolventes. Si se permite que una cantidad razonable de aire entre en la línea de Schlenk, el oxígeno líquido puede condensarse en la trampa fría como un líquido azul pálido. Puede producirse una explosión debido a la reacción del oxígeno líquido con cualquier compuesto orgánico también en la trampa.

Para más información The Schlenk Line Survival Guide

  • Balón de Schlenk
  • Bomba de Schlenk
  • Cromatografía en papel de bolígrafos de tinta gel
  • Cromatografía de pigmentos vegetales
  • Cromatografía en tapón de sílica

Como citar este artículo:

APA: (2019-04-15). Línea de Schlenk. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/

ACS: . Línea de Schlenk. https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/. Fecha de consulta 2025-10-23.

IEEE: , "Línea de Schlenk," https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/, fecha de consulta 2025-10-23.

Vancouver: . Línea de Schlenk. [Internet]. 2019-04-15 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/.

MLA: . "Línea de Schlenk." https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/. 2019-04-15. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Triángulo de Perkin

Publicado el abril 8, 2019julio 25, 2022 Por admin
Triángulo de Perkin

Tiempo de lectura estimado: 7 minutos

El triángulo de Perkin es un aparato especializado para la destilación de materiales sensibles al aire. Recibe su nombre de William Henry Perkin Jr., cuyo diseño tenía una forma aproximadamente triangular. El diagrama muestra una versión más moderna, en la que los grifos de vidrio han sido reemplazados por grifos de teflón más herméticos.

  • Historia del triángulo de Perkin
  • Perkin conoce a Thorne
  • Perkin sigue su camino
  • El camino de Thorne
  • Descripción del triangulo de Perkin
  • Secado de disolventes
  • Uso del triángulo de Perkin en destilación

Historia del triángulo de Perkin

Uno de estos aspirantes a químico en 1880 fue William Henry Perkin – hijo del más famoso William Henry Perkin (1838-1907) quien a la edad de 18 años sintetizó accidentalmente el impresionante tinte púrpura que llamó «malva», y estableció un negocio en el Reino Unido para explotar su descubrimiento.

William Henry Jr. fue el mayor de los tres hijos de Perkin, todos los cuales se convirtieron en químicos. Habiendo estudiado con Edward Frankland, vino a Alemania para trabajar con uno de los grandes nombres de la época, Johannes Wislicenus, uno de los primeros en adoptar la teoría estructural de la química que sostenía que la conectividad era la clave para la comprensión química. 

Químico orgánico inglés, 1860-1929. Sintetizó una serie de productos naturales, y conmemoró en el triángulo de Perkin para la destilación al vacío
William Henry Perkin, Jr. Químico orgánico inglés, 1860-1929. Sintetizó una serie de productos naturales, y conmemoró en el triángulo de Perkin para la destilación al vacío

Perkin conoce a Thorne

Al llegar a Warzburg, Perkin habría conocido a un londinense un poco mayor que él, Leonard Temple Thorne, que también había pasado por el laboratorio de Frankland. Thorne trabajaba en las reacciones de condensación, química que a menudo conducía a productos frágiles que no se purificaban fácilmente por destilación.

Thorne había recurrido por tanto a un nuevo método: la destilación al vacío, una idea revolucionaria en aquel momento. Al reducir el punto de ebullición, amplió enormemente la variedad de las moléculas que podían ser purificadas. Sin embargo, la recogida de diferentes fracciones de destilación presentaba un problema, ya que cambiar el matraz receptor significaba romper el vacío y detener la destilación. Uno de los métodos preferidos de la época era utilizar un soporte giratorio de tubos de ensayo, encerrado en un desecador de vacío modificado, que podía girarse para recoger cada fracción. Funcionaba, pero sólo permitía recoger pequeñas fracciones.

Leonard Temple Thorne, verdadero inventor del triángulo
Leonard Temple Thorne, verdadero inventor del triángulo

El enfoque de Thorne era bastante diferente. Las fracciones se recogían en un embudo de adición con presión, los tubos laterales dispuestos en un triángulo y equipados con llaves de paso, de modo que el matraz receptor, fijado en la parte inferior, pudiera ser aislado de la destilación sin interrupción. La belleza del triángulo de Thorne era que podía aplicarse a reacciones incluso en la mayor de las escalas. Y, como señaló en su documento de 1883, también podía utilizarse para aislar productos sensibles al aire – las principales razones por las que todavía se utiliza hoy en día, en forma modificada.

Perkin sigue su camino

Después de obtener su doctorado en 1882, Perkin fue al grupo de Adolf Baeyer en Munich, que atrajo a las mejores mentes jóvenes de Alemania. Su tarea inicial implicaba muchas destilaciones, y es probable que usara el dispositivo de Thorne en su trabajo. Pronto supervisó a los estudiantes, y siguió su corazonada de que era posible hacer anillos de 3 y 4 miembros, a pesar de que sus colegas le advirtieron que haría el ridículo. Perkin tenía triunfalmente razón, y después de breves períodos en Manchester y en el Heriot-Watt College de Edimburgo, se convirtió en profesor de química en Manchester, donde pronto construyó una formidable escuela de síntesis de productos naturales. A esto le siguió su nombramiento como Profesor Waynflete de Química en Oxford. A pesar de las pesadas responsabilidades administrativas, que él odiaba, seguía trabajando en el banco por las tardes, con el triángulo de Thorne – ahora marca registrada de Perkin – listo para las destilaciones.

El camino de Thorne

¿Y qué fue de Thorne? Volvió al Reino Unido en 1881 donde se convirtió en el asistente de Perkin padre en su laboratorio de Surrey. En 1886, Thorne se unió a la Compañía de Oxígeno de Brin, proveedor de aire líquido a William Ramsay en su búsqueda de los gases nobles más pesados. Más tarde trabajó para Garton Hill, un proveedor de ingredientes para la elaboración de cerveza.

Thorne siguió siendo aficionado a su tiempo en Alemania y fue un miembro activo de la Sociedad Británica Goethe, dedicando mucho tiempo a la promoción de las relaciones anglo-alemanas a lo largo de los años 20 y principios de los 30. Uno puede imaginar su tristeza por el hecho de que los intercambios académicos y culturales en los que él y sus contemporáneos habían participado habían hecho tan poco para detener las mareas de la historia. Mientras tanto su invento sería asociado para siempre, al menos en Inglaterra, con la familia Perkin. En Alemania, mientras tanto, el dispositivo se conoció como el adaptador Anschütz-Thiele.

Descripción del triangulo de Perkin

Algunos compuestos tienen altos puntos de ebullición y son sensibles al aire. Se puede utilizar un simple sistema de destilación al vacío, en el que el vacío se sustituye por un gas inerte una vez completada la destilación. Sin embargo, este sistema es menos satisfactorio si se desea recoger fracciones a una presión reducida. Para ello, se puede añadir un adaptador «pig» al final del condensador, o para obtener mejores resultados o para compuestos muy sensibles al aire, se puede utilizar un aparato de triángulo Perkin.

El triángulo de Perkin utiliza una serie de grifos de vidrio o de teflón para permitir que las fracciones se aíslen del resto del alambique, sin que el cuerpo principal de la destilación sea retirado del vacío o de la fuente de calor, para que el reflujo pueda continuar. Para ello, la muestra se aísla primero del vacío por medio de los grifos. El vacío sobre la muestra se sustituye entonces por un gas inerte como el nitrógeno o el argón. El recipiente de recolección o el receptor todavía puede ser retirado y tapado. Finalmente, se puede añadir un nuevo recipiente de recogida al sistema, evacuarlo y conectarlo de nuevo al sistema de destilación a través de los grifos para recoger la siguiente fracción. El proceso se repite hasta que se hayan recogido todas las fracciones.

En el asombroso libro de Avery Morton "Laboratory Technique in Organic Synthesis", el receptor de tipo triangular se atribuye a Thorne
En el asombroso libro de Avery Morton «Laboratory Technique in Organic Synthesis», el receptor de tipo triangular se atribuye a Thorne

Secado de disolventes

Un triángulo de Perkin es también un dispositivo conveniente para el secado de disolventes. Se puede dejar que el disolvente refluya sobre un agente secante alojado en el pote de la destilería (mostrado como 2 en la figura) durante un tiempo adecuado para secar el disolvente. El grifo colector (mostrado como 5 en la figura) puede abrirse para recoger el disolvente en un matraz Schlenk para su almacenamiento. Dependiendo del punto de ebullición del disolvente, se puede aplicar un vacío.

Uso del triángulo de Perkin en destilación

Esquema de una destilación empleando un triángulo de Perkin
Esquema de una destilación empleando un triángulo de Perkin

Una configuración de destilación del triángulo de Perkin

  1. Barra agitadora/gránulos anti-bumping
  2. Balón de destilación
  3. Columna de fraccionamiento, preferiblemente con camisa de vacío aislada
  4. Termómetro
  5. Grifo de teflón 1, grifo recolector de destilados
  6. Dedo frío
  7. Salida de agua de refrigeración
  8. Entrada de agua de refrigeración
  9. Tapón de teflón 2, aún tapón de aislamiento
  10. Entrada de vacío/gas
  11. Grifo de teflón 3, grifo de aislamiento de destilados
  12. Balón receptor

Para más información Classic Kit: ‘Perkin’s’ triangle

  • El color púrpura
  • Mauveína
  • Destilación fraccionada
  • Destilación al vacío
  • Línea de Schlenk

Como citar este artículo:

APA: (2019-04-08). Triángulo de Perkin. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/

ACS: . Triángulo de Perkin. https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/. Fecha de consulta 2025-10-23.

IEEE: , "Triángulo de Perkin," https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/, fecha de consulta 2025-10-23.

Vancouver: . Triángulo de Perkin. [Internet]. 2019-04-08 [citado 2025-10-23]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/.

MLA: . "Triángulo de Perkin." https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/. 2019-04-08. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Paginación de entradas

Anteriores 1 … 36 37 38 … 44 Siguientes

Como citar

  • Como citar quimicafacil.net
  • Anuncio

    Buscar

    Anuncio

    Tabla periódica interactiva

    Anuncio

    Reciente

    • Premio Nobel de Química 1935
    • Citrato férrico amónico
    • James Chadwick
    • Análisis de ácidos orgánicos
    • Escobilla de laboratorio
    Anuncio

    Links de interés

    • Tabla periódica de los elementos - 2025
    • Calendario Químico - 2025
    • Papel hexagonal para química orgánica
    • Hexagonal paper – Organic Chemistry Notebook
    • Cuaderno de laboratorio para química orgánica
    • Tabla Periódica Etimológica
    Anuncio

    Índices de artículos

    • Biografías
    • Ciencia y arte
    • Compuesto de la semana
    • Manual de laboratorio
    • Material de laboratorio en química y ciencia
    • Notas de química
    • Tabla Periódica Etimológica
    • Técnicas de laboratorio
    Anuncio

    Top de descargas

    • Tabla periódica de los elementos en español - actualizada 2022 - PDF (1745118 descargas )
    • Tabla periódica de los elementos en blanco - PDF (1587359 descargas )
    • Periodic Table of the Elements in English - updated 2022 - PDF (1538566 descargas )
    • Tabla periódica de los elementos en español - actualizada 2022 - PNG (1412955 descargas )
    • Tabla periódica actualizada 2023 - color PDF (1326036 descargas )
    • Tabla periódica de los elementos 2024 - Color (1154179 descargas )
    Anuncio

    Webs amigas

    • FiQuiPedia.es
    Anuncio

    Artículos populares del mes

    Anuncio

    Algunos derechos reservados © 2024 Quimicafacil.net.

    Funciona con Tema PressBook para WordPress

     

    Cargando comentarios...