Saltar al contenido
  • YouTube
  • TikTok
  • Facebook
  • Twitter
  • Instagram
  • Pinterest
  • Telegram
Quimicafacil.net

Quimicafacil.net

Experimentos, historia, datos curiosos y más

  • Temas
    • Teorías y modelos atómicos
    • Sistemas de medidas
    • Mujeres en la historia de la química
    • Material de laboratorio
    • Biografias
    • IUPAC
    • Efemérides
  • Laboratorio
    • Técnicas de laboratorio
    • Manual de laboratorio
      • Demostración
      • Química general – básica
      • Química analítica
      • Química Inorgánica
      • Química Orgánica
      • Bioquímica
      • Electroquímica
      • Fisicoquímica
      • Química instrumental
  • Secciones
    • Compuesto de la semana
    • Ciencia y arte
    • Tablas Periódicas
    • Trucos, consejos y tips
    • Curiosidades de la química
    • Notas de química
    • Software
  • Humor
    • Archivo memes y humor 2021
    • Archivo memes y humor 2020
    • Archivo memes y humor 2019
  • Acerca de
    • ¿Que es quimicafacil.net?
    • Donaciones
    • Colaboraciones
    • Política de privacidad y cookies
  • Alternar formulario de búsqueda

Balón de Kjeldahl

Publicado el junio 10, 2019mayo 22, 2023 Por admin
Balón de Kjeldahl

Tiempo de lectura estimado: 5 minutos

El balón de Kjeldahl es un recipiente de fondo redondo abombado y cuello largo, empleado para realizar la digestión de la muestra según la técnica de Kjeldahl para cantidad de nitrógeno

Una pieza de vidrio moderna con raíces en la industria cervecera es el matraz Kjeldahl, de fondo redondo y cuello largo para atrapar las salpicaduras del material que se está hirviendo para su análisis. Fue ideado por Johan Gustav Kjeldahl para resolver un problema relacionado con la cerveza.

En la década de 1870, la cervecería de Carlsberg en Dinamarca era propiedad y estaba dirigida con mucho éxito por J C Jacobsen, un hombre de gran cultura y perspicacia que quería que la ciencia más reciente informara y guiara su negocio. Inspirado en parte por la labor de Louis Pasteur en París, creó una fundación, en cuyo centro se encontraba un laboratorio dedicado a la investigación básica. Necesitando un químico, contrató al joven Kjeldahl.

  • El análisis del nitrógeno, un desafio
  • El método de Kjeldahl
    • Presentando el método de Kjeldahl al mundo

El análisis del nitrógeno, un desafio

Nacido en 1849 en Jaegerspris, Copenhague, Kjeldahl había estudiado en el Real Politécnico de Copenhague antes de convertirse en asistente del amigo de Jacobsen, C T Barfoed, en el Real Colegio Agrícola, en 1873. En su nuevo puesto, Kjeldahl pronto se interesó por el contenido de proteínas de los granos utilizados en la industria cervecera – mediciones que en esencia significaban averiguar cuánto nitrógeno contenían sus muestras.

A mediados del siglo XIX, si se quería determinar la relación C:H:N de un compuesto orgánico, entonces el análisis de combustión era el único juego en la ciudad. Gay-Lussac y Liebig habían perfeccionado este arte para determinar el contenido de carbono e hidrógeno, midiendo el dióxido de carbono y el agua producidos cuando un compuesto se quemaba con óxido de cobre.

Sistema de digestión con balones kjeldahl
Sistema de digestión con balones kjeldahl

El nitrógeno, sin embargo, era un cliente más complicado: la combustión incompleta producía óxidos de nitrógeno, y la contaminación por aire siempre era una preocupación. El gran rival analítico de Liebig, Dumas, purgó todo su aparato con dióxido de carbono antes de quemar la muestra, y recogió burbujas de nitrógeno sobre el mercurio. El método era complicado y laborioso. 

En lugar de recolectar gas de nitrógeno, los químicos analíticos posteriores prefirieron determinar el contenido de nitrógeno convirtiéndolo cuantitativamente en amoníaco. En 1841 dos de los estudiantes de Liebig, Will y Varrentrapp, desarrollaron un método en el que el compuesto orgánico se pirolizaba directamente con un álcali, liberando amoníaco que se convertía en iones de amonio, se precipitaba en forma de sal y se pesaba.

El método de Kjeldahl

Cuando Kjeldahl comenzó a trabajar en las proteínas de la cebada, este método aún se estaba desarrollando con fuerza, pero era completamente inadecuado para su proyecto, que requería muchos análisis en serie. Kjeldahl necesitaba un método que evitara completamente la combustión.

Al digerir sus muestras en ácido sulfúrico concentrado en presencia de permanganato, descubrió que podía generar iones de amonio cuantitativamente. La solución fue entonces diluida y transferida a un simple aparato de destilación que incluía el matraz de cuello largo que vino a llevar su nombre. Al añadir el álcali se liberó el amoníaco, que se destiló directamente de un condensador en ácido estándar. Una serie de aditivos y catalizadores mejoraron el proceso, que hoy en día está mayormente automatizado.

Presentando el método de Kjeldahl al mundo

Kjeldahl incluyó su método en el informe anual de Carlsberg de 1882-83 y lo presentó a la Fundación Química Danesa en marzo de 1883. William Crookes lo reportó con entusiasmo en su Chemical News en agosto y el método se puso de moda rápidamente. En el Journal of Analytical Chemistry el analista L F Kebler comentó que «ningún método ha sido adoptado tan universalmente, en tan poco tiempo, como el método de Kjeldahl». 

El mismo Kjeldahl siguió trabajando en su laboratorio perfeccionando otras técnicas y supervisando el diseño de un nuevo laboratorio. Nunca se casó, y murió de una hemorragia cerebral mientras nadaba en el mar en 1900. 

El hecho de que fuera sucedido en el laboratorio de Carlsberg por S P L Sorensen, quien inventó la escala de pH, hace que uno se pregunte dónde estaría la humanidad si más cervecerías tomaran una visión tan iluminada de sus beneficios.

En la década de 1960, con el advenimiento de la cromatografía de gases, el método de combustión de Dumas para recoger el gas nitrógeno volvió con fuerza. Pero Carlsberg podía decir con orgullo que por casi un siglo Kjeldahl había sido el mejor método analítico del mundo.

Para más información Classic Kit: Kjeldahl flask

  • Johan Kjeldahl
  • Aislamiento del nitrógeno
  • Técnicas de laboratorio
  • Óxido de nitrógeno (I)
  • Triyoduro de nitrógeno

Como citar este artículo:

APA: (2019-06-10). Balón de Kjeldahl. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/

ACS: . Balón de Kjeldahl. https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/. Fecha de consulta 2025-06-01.

IEEE: , "Balón de Kjeldahl," https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/, fecha de consulta 2025-06-01.

Vancouver: . Balón de Kjeldahl. [Internet]. 2019-06-10 [citado 2025-06-01]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/.

MLA: . "Balón de Kjeldahl." https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-kjeldahl/. 2019-06-10. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Síntesis de alumbre de potasio

Publicado el junio 5, 2019enero 9, 2024 Por admin
Síntesis de alumbre de potasio

Un alumbre es un tipo de sulfato triple compuesto por el sulfato de un metal trivalente y otro de un metal monovalente. El ejemplo clásico es el alumbre de potasio, conformado por el ion sulfato y los iones potasio y aluminio KAl(SO4)2·12H2O. El alumbre potásico tiene múltiples aplicaciones en salud, química, tintorería, cosmética entre otros….

Leer más “Síntesis de alumbre de potasio” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Manual de laboratorio, Química Inorgánica

Estradiol

Publicado el junio 4, 2019mayo 22, 2023 Por admin
Estradiol

El estradiol o oestradiol es una hormona estrógeno esteroide, se considera la hormona femenina dominante y esta relacionada con los ciclos hormonales reproductivos femeninos. Además, es responsable del desarrollo y mantenimiento de caracteres sexuales secundarios femeninos, y de procesos en tejidos como huesos, piel, hígado y cerebro. Esta hormona no es exclusiva del ser humano,…

Leer más “Estradiol” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Compuesto de la semana

Bomba de Sprengel

Publicado el junio 3, 2019mayo 22, 2023 Por admin
Bomba de Sprengel

Tiempo de lectura estimado: 4 minutos

La bomba de Sprengel fue el primer aparato desarrollado para obtener alto vacío (<1*10-8 atm). Su inventor fue el químico alemán Hermann Sprengel. Funciona bajo el principio de tromba, que consiste en una corriente de líquido que arrastra consigo aire y genera un vacío parcial

La bomba Sprengel es una bomba de vacío que utiliza las gotas de mercurio que caen a través de un tubo capilar de pequeño diámetro para atrapar el aire del sistema a evacuar. Fue inventada por el químico Hermann Sprengel, nacido en Hannover, en 1865, mientras trabajaba en Londres. La bomba creó el mayor vacío alcanzable en ese momento, menos de 1 mPa (aproximadamente 1×10-8 atm).

  • Funcionamiento de la bomba de Sprengel
  • Aplicaciones

Funcionamiento de la bomba de Sprengel

Como el propio Sprengel explicó su bomba de vacío era una modificación del » trombo» (o «trombe»), que se conocía en Europa al menos desde el siglo XVI. En un trompo, el agua cae de un depósito a través de una tubería. El extremo superior del tubo está cerrado excepto por un conjunto de tubos de pequeño diámetro, cada uno de los cuales está abierto al aire en un extremo y que se sumerge bajo el agua en su otro extremo.

Diagrama de la bomba de Sprengel
Diagrama de una bomba de Sprengel

A medida que el agua cae, arrastra el aire de los tubos. El agua lleva el aire al fondo del tubo, donde el aire se acumula en un depósito a alta presión. El trampantojo se usaba para producir un flujo constante de aire para la fundición y la elaboración de metales, entre otros usos. Sprengel simplemente conectó un tubo al extremo superior de la tubería con el fin de utilizar el flujo de líquido para evacuar un recipiente

El suministro de mercurio está contenido en el depósito de la izquierda. Fluye hacia el bulbo B, donde forma gotas que caen en el largo tubo de la derecha. Estas gotas atrapan entre ellas el aire en B. El mercurio que se agota se recoge y se vierte de nuevo en el depósito de la izquierda. De esta manera se puede extraer prácticamente todo el aire del bulbo B, y por lo tanto de cualquier recipiente R, que puede estar conectado con el B. En el M hay un manómetro que indica la presión en el recipiente R, que se está agotando.

Las gotas de mercurio que caen comprimen el aire hasta la presión atmosférica que se libera cuando la corriente llega a un recipiente en el fondo del tubo. A medida que la presión disminuye, el efecto de amortiguación del aire atrapado entre las gotas disminuye, por lo que se puede escuchar un martilleo o golpeteo, acompañado de destellos de luz dentro del recipiente evacuado debido a los efectos electrostáticos sobre el mercurio.

La velocidad, simplicidad y eficiencia de la bomba Sprengel la convirtió en un dispositivo popular entre los experimentadores. El primer modelo de Sprengel podía evacuar un recipiente de medio litro en 20 minutos.

Aplicaciones

William Crookes usó las bombas en serie en sus estudios de las descargas eléctricas. William Ramsay las usó para aislar los gases nobles, y Joseph Swan y Thomas Edison las usaron para evacuar sus nuevas lámparas de filamento de carbono. La bomba Sprengel fue la herramienta clave que hizo posible en 1879 agotar suficientemente el aire de una bombilla para que una bombilla eléctrica incandescente de filamento de carbono durara lo suficiente para ser comercialmente práctica. El propio Sprengel pasó a investigar los explosivos y finalmente fue elegido miembro de la Royal Society.

Para más información Classic Kit: Sprengel pump | Opinion | Chemistry World

  • La química de las bombas de baño
  • Bomba de Schlenk
  • Balón de Schlenk
  • Balón Straus

Como citar este artículo:

APA: (2019-06-03). Bomba de Sprengel. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/

ACS: . Bomba de Sprengel. https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/. Fecha de consulta 2025-06-01.

IEEE: , "Bomba de Sprengel," https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/, fecha de consulta 2025-06-01.

Vancouver: . Bomba de Sprengel. [Internet]. 2019-06-03 [citado 2025-06-01]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/.

MLA: . "Bomba de Sprengel." https://quimicafacil.net/infografias/material-de-laboratorio/bomba-de-sprengel/. 2019-06-03. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Síntesis del ácido bórico

Publicado el mayo 29, 2019enero 10, 2024 Por admin
Síntesis del ácido bórico

El ácido bórico, también conocido como ácido trioxobórico es un ácido de Lewis débil tribásico, usado en ocasiones como antiséptico, insecticida, retardante a la llama entre otros usos. Se encuentra en forma natural en zonas volcánicas, minerales, agua de mar y en pequeñas cantidades en las plantas. Ácido bórico El químico Holandés Wilhelm Homberg lo…

Leer más “Síntesis del ácido bórico” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Manual de laboratorio, Química Inorgánica

Ácido pantoténico

Publicado el mayo 28, 2019abril 28, 2022 Por admin
Ácido pantoténico

El ácido pantoténico o también conocido como vitamina B5, es un compuesto soluble en agua y nutriente esencial para muchos organismos. Se requiere para sintetizar la coenzima A, así como para sintetizar y metabolizar proteínas, carbohidratos y grasas. Química del ácido pantoténico Químicamente, el ácido pantoténico es la amida entre el ácido pantóico y la…

Leer más “Ácido pantoténico” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Compuesto de la semana

Lars Fredrik Nilson

Publicado el mayo 27, 2019enero 10, 2024 Por admin
Lars Fredrik Nilson

Lars Fredrik Nilson (27 de mayo de 1840 – 14 de mayo de 1899) fue un químico sueco que descubrió el elemento escandio en 1879. Infancia y educación Nilson nació en la localidad de Skönberga en Östergötland, Suecia. Su padre, Nikolaus, era granjero. La familia se mudó a Gotland cuando Lars Fredrik era joven. Después…

Leer más “Lars Fredrik Nilson” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Biografias, Infografías

Rendimiento de reacción

Publicado el mayo 22, 2019enero 10, 2024 Por admin
Rendimiento de reacción

Una reacción química ideal ocurre con un rendimiento de reacción total, es decir, 100% de conversión de los reactivos en productos. Cuando las cantidades de reactivos no se encuentran en proporciones estequiométricas, la cantidad del reactivo limite será la barrera para la conversión del o de los otros reactivos. Ya en un ambiente real, pocas…

Leer más “Rendimiento de reacción” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Manual de laboratorio, Química general – básica, Química Inorgánica

Atorvastatina

Publicado el mayo 21, 2019enero 10, 2024 Por admin
Atorvastatina

La atorvastatina es un compuesto de la familia de las estatinas. Es vendida de manera comercial bajo el nombre de Lipitor ® entre otros y se emplea en la prevención de enfermedades cardiovasculares asociadas a niveles anormales de lípidos en el organismo. Fue sintetizada por el químico Bruce Roth en los laboratorios de Warner- Lambert…

Leer más “Atorvastatina” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Compuesto de la semana

Balón Straus

Publicado el mayo 20, 2019enero 10, 2024 Por admin
Balón Straus

Tiempo de lectura estimado: 3 minutos

Balón Straus, también llamado matraz Straus, es una variación de la bomba de Schlenk, desarrollada por la Kontes Glass Co. Se emplea generalmente para almacenar solventes secos y desgasificados en el manejo de sustancias y reacciones sensibles al aire

  • Estructura de un balón Straus

Un matraz o balón Straus (a menudo mal escrito «Strauss») es una subclase de matraz «bomba» desarrollado originalmente por la Kontes Glass Company, comúnmente usado para almacenar disolventes secos y desgasificados.

Los balones Straus se denominan a veces bombas de disolvente, nombre que se aplica a cualquier bomba Schlenk dedicada a almacenar disolvente. Los frascos Straus se diferencian principalmente de otras «bombas» por la estructura de su cuello.

Estructura de un balón Straus

Detalle del cuello de un balón Straus
Detalle del cuello de un balón Straus

Dos cuellos emergen de un balón de fondo redondo, uno más grande que el otro. El cuello más grande termina en una junta de vidrio esmerilado y está permanentemente dividido por el vidrio soplado del acceso directo al matraz. El cuello más pequeño incluye la rosca necesaria para atornillar un tapón de teflón en forma perpendicular al frasco.

Dibujo balón Straus

Los dos cuellos se unen a través de un tubo de vidrio. La unión de vidrio soplado puede conectarse a un colector directamente o a través de un adaptador y una manguera. Una vez conectado, la válvula del tapón puede abrirse parcialmente para permitir que el disolvente del balón Straus se transfiera al vacío a otros recipientes. O, una vez conectado a la línea, el cuello puede ser colocado bajo una presión positiva de gas inerte y la válvula del tapón puede ser totalmente removida.

Esto permite el acceso directo al matraz a través de un estrecho tubo de vidrio ahora protegido por una cortina de gas inerte. El disolvente entonces puede ser transferido a través de la cánula a otro matraz. Por el contrario, otros tapones de matraz de bomba no están necesariamente situados de manera ideal para proteger la atmósfera del balón de la atmósfera externa.

Para más información AF-0525 – FLASKS, STORAGE, STRAUS, AIRFREE

  • Bomba de Schlenk
  • La química de las bombas de baño
  • Balón de Schlenk
  • Línea de Schlenk
  • Cromatografía en tapón de sílica

Como citar este artículo:

APA: (2019-05-20). Balón Straus. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/

ACS: . Balón Straus. https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/. Fecha de consulta 2025-06-01.

IEEE: , "Balón Straus," https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/, fecha de consulta 2025-06-01.

Vancouver: . Balón Straus. [Internet]. 2019-05-20 [citado 2025-06-01]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/.

MLA: . "Balón Straus." https://quimicafacil.net/infografias/material-de-laboratorio/balon-de-straus/. 2019-05-20. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Paginación de entradas

Anteriores 1 … 103 104 105 … 117 Siguientes
Anuncio

Buscar

Anuncio

Tabla periódica interactiva

Anuncio

Reciente

  • Química del cloro
  • Julius Stieglitz
  • Premio Nobel de Química 1922
  • Carfentanilo
  • John Jacob Abel
Anuncio

Links de interés

  • Tabla periódica de los elementos - 2025
  • Calendario Químico - 2025
  • Papel hexagonal para química orgánica
  • Hexagonal paper – Organic Chemistry Notebook
  • Cuaderno de laboratorio para química orgánica
  • Tabla Periódica Etimológica
Anuncio

Índices de artículos

  • Biografías
  • Ciencia y arte
  • Compuesto de la semana
  • Manual de laboratorio
  • Material de laboratorio en química y ciencia
  • Notas de química
  • Tabla Periódica Etimológica
  • Técnicas de laboratorio
Anuncio

Top de descargas

  • Tabla periódica de los elementos en español - actualizada 2022 - PDF (1378460 descargas )
  • Tabla periódica de los elementos en blanco - PDF (1229585 descargas )
  • Tabla periódica de los elementos en español - actualizada 2022 - PNG (1112783 descargas )
  • Periodic Table of the Elements in English - updated 2022 - PDF (1088632 descargas )
  • Tabla periódica actualizada 2023 - color PDF (1016474 descargas )
  • Tabla periódica de los elementos 2024 - Color (844567 descargas )
Anuncio

Webs amigas

  • FiQuiPedia.es
Anuncio

Artículos populares del mes

Anuncio

Algunos derechos reservados © 2024 Quimicafacil.net.

Funciona con Tema PressBook para WordPress

 

Cargando comentarios...