Saltar al contenido
  • YouTube
  • TikTok
  • Facebook
  • Twitter
  • Instagram
  • Pinterest
  • Telegram
Quimicafacil.net

Quimicafacil.net

Experimentos, historia, datos curiosos y más

  • Temas
    • Teorías y modelos atómicos
    • Sistemas de medidas
    • Mujeres en la historia de la química
    • Material de laboratorio
    • Biografias
    • IUPAC
    • Efemérides
  • Laboratorio
    • Técnicas de laboratorio
    • Manual de laboratorio
      • Demostración
      • Química general – básica
      • Química analítica
      • Química Inorgánica
      • Química Orgánica
      • Bioquímica
      • Electroquímica
      • Fisicoquímica
      • Química instrumental
  • Secciones
    • Compuesto de la semana
    • Ciencia y arte
    • Tablas Periódicas
    • Trucos, consejos y tips
    • Curiosidades de la química
    • Notas de química
    • Software
  • Humor
    • Archivo memes y humor 2021
    • Archivo memes y humor 2020
    • Archivo memes y humor 2019
  • Acerca de
    • ¿Que es quimicafacil.net?
    • Donaciones
    • Colaboraciones
    • Política de privacidad y cookies
  • Alternar formulario de búsqueda

Línea de Schlenk

Publicado el abril 15, 2019enero 10, 2024 Por admin
Línea de Schlenk

Tiempo de lectura estimado: 5 minutos

La línea de Schlenk hace parte de los equipos de laboratorio desarrollados por Wilhelm Johann Schlenk, químico alemán, a inicios del siglo XX para sus investigaciones en química organometálica

  • Línea de Schlenk
  • Técnicas de uso de la linea de Schlenk
  • Peligros

Línea de Schlenk

La línea de Schlenk (también llamado colector de gas al vacío) es un aparato químico de uso común desarrollado por Wilhelm Schlenk. Consiste en un colector doble con varios puertos. Un colector está conectado a una fuente de gas inerte purificado, mientras que el otro está conectado a una bomba de vacío.

La línea de gas inerte se ventila a través de un burbujeador de aceite, mientras que los vapores de disolvente y los productos de reacción gaseosa se evita que contaminen la bomba de vacío mediante una trampa fría de nitrógeno líquido o hielo seco/acetona.

Llaves de paso especiales o grifos de teflón permiten seleccionar el vacío o el gas inerte sin necesidad de colocar la muestra en una línea separada.

  • Configuración del colector de vacío/gas: 1 entrada de gas inerte, 2 salida de gas inerte (al burbujeador), 3 vacío (a las trampas frías) 4 línea de reacción, 5 grifo de teflón al gas, 6 grifo de teflón al vacío
  • Configuración del colector de vacío/gas: 1 entrada de gas inerte, 2 salida de gas inerte (al burbujeador), 3 vacío (a las trampas frías), 4 línea de reacción, 5 llave de paso oblicua doble (es decir, un grifo de vidrio con 2 «canales/líneas» paralelos separados que corren en diagonal al eje del grifo)
  • Una suspensión amarilla se filtra a través de un embudo de vidrio sinterizado en otro frasco de Schlenk en condiciones de ausencia de aire.
  • Los dos reactivos para una reacción de aldol se preparan en frascos adyacentes, listos para que uno se transfiera al otro mientras se mantienen las condiciones de ausencia de aire.

Las líneas de Schlenk son útiles para manipular con seguridad y éxito los compuestos sensibles a la humedad y al aire. El vacío también se utiliza a menudo para eliminar los últimos restos de disolvente de una muestra. Los colectores de vacío y de gas suelen tener muchos puertos y líneas, y con cuidado es posible que se realicen varias reacciones u operaciones simultáneamente.

Cuando los reactivos son muy susceptibles a la oxidación, los rastros de oxígeno pueden plantear un problema. Entonces, para eliminar el oxígeno por debajo del nivel de ppm, es necesario purificar el gas inerte haciéndolo pasar a través de un catalizador de desoxigenación, que suele ser una columna de óxido de cobre(I) o de manganeso(II), que reacciona con las trazas de oxígeno presentes en el gas inerte.

Técnicas de uso de la linea de Schlenk

Las principales técnicas asociadas con el uso de una línea de Schlenk incluyen:

  • adiciones de contraflujo, donde se añaden reactivos estables al aire en el recipiente de reacción contra un flujo de gas inerte;
  • el uso de jeringas y septos de goma para transferir líquidos y soluciones;
  • transferencia de cánula, donde los líquidos o soluciones de reactivos sensibles al aire se transfieren entre diferentes vasos tapados con septos usando un tubo largo y delgado conocido como cánula. El flujo de líquido es soportado por el vacío o la presión del gas inerte.

Los objetos de vidrio suelen estar unidos por juntas de vidrio esmerilado bien ajustadas y engrasadas. Se pueden usar tubos de vidrio con juntas de vidrio esmerilado para ajustar la orientación de varios vasos.

La filtración en condiciones inertes plantea un desafío especial que se suele abordar con material de vidrio especializado. Un filtro Schlenk consiste en un embudo de vidrio sinterizado con juntas y llaves de paso.

Al colocar el embudo pre-secado y el matraz receptor en el matraz de reacción contra un flujo de nitrógeno, invirtiendo cuidadosamente el montaje y encendiendo el vacío adecuadamente, la filtración puede lograrse con una exposición mínima al aire.

Peligros

Los principales peligros asociados con el uso de una línea de Schlenk son los riesgos de una implosión o explosión. Una implosión puede ocurrir debido al uso del vacío y a los defectos del aparato de vidrio.

Una explosión puede ocurrir debido al uso común de nitrógeno líquido en la trampa fría, usada para proteger la bomba de vacío de los disolventes. Si se permite que una cantidad razonable de aire entre en la línea de Schlenk, el oxígeno líquido puede condensarse en la trampa fría como un líquido azul pálido. Puede producirse una explosión debido a la reacción del oxígeno líquido con cualquier compuesto orgánico también en la trampa.

Para más información The Schlenk Line Survival Guide

  • Balón de Schlenk
  • Bomba de Schlenk
  • Cromatografía en papel de bolígrafos de tinta gel
  • Cromatografía de pigmentos vegetales
  • Cromatografía en tapón de sílica

Como citar este artículo:

APA: (2019-04-15). Línea de Schlenk. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/

ACS: . Línea de Schlenk. https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/. Fecha de consulta 2026-01-26.

IEEE: , "Línea de Schlenk," https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/, fecha de consulta 2026-01-26.

Vancouver: . Línea de Schlenk. [Internet]. 2019-04-15 [citado 2026-01-26]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/.

MLA: . "Línea de Schlenk." https://quimicafacil.net/infografias/material-de-laboratorio/linea-de-schlenk/. 2019-04-15. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Cromatografía de pigmentos vegetales

Publicado el abril 10, 2019enero 5, 2024 Por admin
Cromatografía de pigmentos vegetales

La cromatografía es un método de separación de mezclas como los pigmentos, empleado a menudo en laboratorios de análisis para la separación e identificación de compuestos presentes en una matriz. Existen una gran cantidad de técnicas cromatográficas, desde las más sencillas (cromatografía en papel y columna) hasta versiones altamente sofisticadas que implican el uso de…

Leer más “Cromatografía de pigmentos vegetales” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Manual de laboratorio, Química analítica

Ectoína

Publicado el abril 9, 2019enero 10, 2024 Por admin
Ectoína

La ectoína (Ácido (S)-2-metil-3,4,5,6-tetrahidropirimidino-4-carboxílico) es un compuesto de origen natural que se ha encontrado en una gran cantidad de especies de bacterias. Es un soluto compatible o osmoprotector (pequeñas moléculas orgánicas con carga neutral y baja toxicidad a altas concentraciones que actúan como osmolitos y ayudan a los microorganismos a sobrevivir condiciones de estrés osmótico…

Leer más “Ectoína” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Compuesto de la semana

Triángulo de Perkin

Publicado el abril 8, 2019julio 25, 2022 Por admin
Triángulo de Perkin

Tiempo de lectura estimado: 7 minutos

El triángulo de Perkin es un aparato especializado para la destilación de materiales sensibles al aire. Recibe su nombre de William Henry Perkin Jr., cuyo diseño tenía una forma aproximadamente triangular. El diagrama muestra una versión más moderna, en la que los grifos de vidrio han sido reemplazados por grifos de teflón más herméticos.

  • Historia del triángulo de Perkin
  • Perkin conoce a Thorne
  • Perkin sigue su camino
  • El camino de Thorne
  • Descripción del triangulo de Perkin
  • Secado de disolventes
  • Uso del triángulo de Perkin en destilación

Historia del triángulo de Perkin

Uno de estos aspirantes a químico en 1880 fue William Henry Perkin – hijo del más famoso William Henry Perkin (1838-1907) quien a la edad de 18 años sintetizó accidentalmente el impresionante tinte púrpura que llamó «malva», y estableció un negocio en el Reino Unido para explotar su descubrimiento.

William Henry Jr. fue el mayor de los tres hijos de Perkin, todos los cuales se convirtieron en químicos. Habiendo estudiado con Edward Frankland, vino a Alemania para trabajar con uno de los grandes nombres de la época, Johannes Wislicenus, uno de los primeros en adoptar la teoría estructural de la química que sostenía que la conectividad era la clave para la comprensión química. 

Químico orgánico inglés, 1860-1929. Sintetizó una serie de productos naturales, y conmemoró en el triángulo de Perkin para la destilación al vacío
William Henry Perkin, Jr. Químico orgánico inglés, 1860-1929. Sintetizó una serie de productos naturales, y conmemoró en el triángulo de Perkin para la destilación al vacío

Perkin conoce a Thorne

Al llegar a Warzburg, Perkin habría conocido a un londinense un poco mayor que él, Leonard Temple Thorne, que también había pasado por el laboratorio de Frankland. Thorne trabajaba en las reacciones de condensación, química que a menudo conducía a productos frágiles que no se purificaban fácilmente por destilación.

Thorne había recurrido por tanto a un nuevo método: la destilación al vacío, una idea revolucionaria en aquel momento. Al reducir el punto de ebullición, amplió enormemente la variedad de las moléculas que podían ser purificadas. Sin embargo, la recogida de diferentes fracciones de destilación presentaba un problema, ya que cambiar el matraz receptor significaba romper el vacío y detener la destilación. Uno de los métodos preferidos de la época era utilizar un soporte giratorio de tubos de ensayo, encerrado en un desecador de vacío modificado, que podía girarse para recoger cada fracción. Funcionaba, pero sólo permitía recoger pequeñas fracciones.

Leonard Temple Thorne, verdadero inventor del triángulo
Leonard Temple Thorne, verdadero inventor del triángulo

El enfoque de Thorne era bastante diferente. Las fracciones se recogían en un embudo de adición con presión, los tubos laterales dispuestos en un triángulo y equipados con llaves de paso, de modo que el matraz receptor, fijado en la parte inferior, pudiera ser aislado de la destilación sin interrupción. La belleza del triángulo de Thorne era que podía aplicarse a reacciones incluso en la mayor de las escalas. Y, como señaló en su documento de 1883, también podía utilizarse para aislar productos sensibles al aire – las principales razones por las que todavía se utiliza hoy en día, en forma modificada.

Perkin sigue su camino

Después de obtener su doctorado en 1882, Perkin fue al grupo de Adolf Baeyer en Munich, que atrajo a las mejores mentes jóvenes de Alemania. Su tarea inicial implicaba muchas destilaciones, y es probable que usara el dispositivo de Thorne en su trabajo. Pronto supervisó a los estudiantes, y siguió su corazonada de que era posible hacer anillos de 3 y 4 miembros, a pesar de que sus colegas le advirtieron que haría el ridículo. Perkin tenía triunfalmente razón, y después de breves períodos en Manchester y en el Heriot-Watt College de Edimburgo, se convirtió en profesor de química en Manchester, donde pronto construyó una formidable escuela de síntesis de productos naturales. A esto le siguió su nombramiento como Profesor Waynflete de Química en Oxford. A pesar de las pesadas responsabilidades administrativas, que él odiaba, seguía trabajando en el banco por las tardes, con el triángulo de Thorne – ahora marca registrada de Perkin – listo para las destilaciones.

El camino de Thorne

¿Y qué fue de Thorne? Volvió al Reino Unido en 1881 donde se convirtió en el asistente de Perkin padre en su laboratorio de Surrey. En 1886, Thorne se unió a la Compañía de Oxígeno de Brin, proveedor de aire líquido a William Ramsay en su búsqueda de los gases nobles más pesados. Más tarde trabajó para Garton Hill, un proveedor de ingredientes para la elaboración de cerveza.

Thorne siguió siendo aficionado a su tiempo en Alemania y fue un miembro activo de la Sociedad Británica Goethe, dedicando mucho tiempo a la promoción de las relaciones anglo-alemanas a lo largo de los años 20 y principios de los 30. Uno puede imaginar su tristeza por el hecho de que los intercambios académicos y culturales en los que él y sus contemporáneos habían participado habían hecho tan poco para detener las mareas de la historia. Mientras tanto su invento sería asociado para siempre, al menos en Inglaterra, con la familia Perkin. En Alemania, mientras tanto, el dispositivo se conoció como el adaptador Anschütz-Thiele.

Descripción del triangulo de Perkin

Algunos compuestos tienen altos puntos de ebullición y son sensibles al aire. Se puede utilizar un simple sistema de destilación al vacío, en el que el vacío se sustituye por un gas inerte una vez completada la destilación. Sin embargo, este sistema es menos satisfactorio si se desea recoger fracciones a una presión reducida. Para ello, se puede añadir un adaptador «pig» al final del condensador, o para obtener mejores resultados o para compuestos muy sensibles al aire, se puede utilizar un aparato de triángulo Perkin.

El triángulo de Perkin utiliza una serie de grifos de vidrio o de teflón para permitir que las fracciones se aíslen del resto del alambique, sin que el cuerpo principal de la destilación sea retirado del vacío o de la fuente de calor, para que el reflujo pueda continuar. Para ello, la muestra se aísla primero del vacío por medio de los grifos. El vacío sobre la muestra se sustituye entonces por un gas inerte como el nitrógeno o el argón. El recipiente de recolección o el receptor todavía puede ser retirado y tapado. Finalmente, se puede añadir un nuevo recipiente de recogida al sistema, evacuarlo y conectarlo de nuevo al sistema de destilación a través de los grifos para recoger la siguiente fracción. El proceso se repite hasta que se hayan recogido todas las fracciones.

En el asombroso libro de Avery Morton "Laboratory Technique in Organic Synthesis", el receptor de tipo triangular se atribuye a Thorne
En el asombroso libro de Avery Morton «Laboratory Technique in Organic Synthesis», el receptor de tipo triangular se atribuye a Thorne

Secado de disolventes

Un triángulo de Perkin es también un dispositivo conveniente para el secado de disolventes. Se puede dejar que el disolvente refluya sobre un agente secante alojado en el pote de la destilería (mostrado como 2 en la figura) durante un tiempo adecuado para secar el disolvente. El grifo colector (mostrado como 5 en la figura) puede abrirse para recoger el disolvente en un matraz Schlenk para su almacenamiento. Dependiendo del punto de ebullición del disolvente, se puede aplicar un vacío.

Uso del triángulo de Perkin en destilación

Esquema de una destilación empleando un triángulo de Perkin
Esquema de una destilación empleando un triángulo de Perkin

Una configuración de destilación del triángulo de Perkin

  1. Barra agitadora/gránulos anti-bumping
  2. Balón de destilación
  3. Columna de fraccionamiento, preferiblemente con camisa de vacío aislada
  4. Termómetro
  5. Grifo de teflón 1, grifo recolector de destilados
  6. Dedo frío
  7. Salida de agua de refrigeración
  8. Entrada de agua de refrigeración
  9. Tapón de teflón 2, aún tapón de aislamiento
  10. Entrada de vacío/gas
  11. Grifo de teflón 3, grifo de aislamiento de destilados
  12. Balón receptor

Para más información Classic Kit: ‘Perkin’s’ triangle

  • El color púrpura
  • Mauveína
  • Destilación fraccionada
  • Destilación al vacío
  • Línea de Schlenk

Como citar este artículo:

APA: (2019-04-08). Triángulo de Perkin. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/

ACS: . Triángulo de Perkin. https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/. Fecha de consulta 2026-01-26.

IEEE: , "Triángulo de Perkin," https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/, fecha de consulta 2026-01-26.

Vancouver: . Triángulo de Perkin. [Internet]. 2019-04-08 [citado 2026-01-26]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/.

MLA: . "Triángulo de Perkin." https://quimicafacil.net/infografias/material-de-laboratorio/triangulo-de-perkin/. 2019-04-08. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Propiedades físicas de los enlaces químicos

Publicado el abril 3, 2019enero 8, 2024 Por admin
Propiedades físicas de los enlaces químicos

Los enlaces químicos se pueden definir cómo la atracción entre átomos, iones o moléculas, y son los responsables de la formación de los compuestos químicos. Estos son el resultado de fuerzas electroestáticas en el caso de enlaces iónicos o compartiendo electrones como sucede en los enlaces covalentes. Asi mismo, los enlaces químicos pueden ser clasificados…

Leer más “Propiedades físicas de los enlaces químicos” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Fisicoquímica, Manual de laboratorio

Fenolftaleína

Publicado el abril 2, 2019enero 9, 2024 Por admin
Fenolftaleína

La fenolftaleína es un compuesto químico con la fórmula C20H14O4 y a menudo se escribe como «HIn» o «phph» en notación abreviada. La fenolftaleína se usa a menudo como un indicador en las valoraciones ácido-base. Para esta aplicación, se vuelve incoloro en soluciones ácidas y rojo – rosado en soluciones básicas. Pertenece a la clase…

Leer más “Fenolftaleína” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Compuesto de la semana

Termómetro de Beckmann

Publicado el abril 1, 2019marzo 28, 2022 Por admin
Termómetro de Beckmann

Tiempo de lectura estimado: 3 minutos

El termómetro de Beckman fue desarrollado por el químico alemán Ernst Otto Beckmann para medir las pequeñas diferencias en las temperaturas de fusión y ebullición que se presentan debido a las propiedades coligativas de las soluciones.

Un termómetro de Beckmann es un dispositivo utilizado para medir pequeñas diferencias de temperatura, pero no los valores absolutos de temperatura. Fue inventado por Ernst Otto Beckmann (1853 – 1923), un químico alemán, para sus mediciones de las propiedades coligativas en 1905. Hoy en día su uso ha sido ampliamente reemplazado por los termómetros electrónicos.

  • Descripción del termómetro de Beckmann
  • Calibración

Descripción del termómetro de Beckmann

La longitud de un termómetro Beckmann es generalmente de 40 a 50 cm. La escala de temperatura típicamente cubre unos 5 °C y se divide en centésimas de grado. Con una lupa es posible estimar los cambios de temperatura en 0,001 °C. La peculiaridad del diseño del termómetro de Beckmann es un depósito (R en el diagrama) en el extremo superior del tubo, mediante el cual la cantidad de mercurio en el bulbo puede aumentarse o disminuirse, de modo que el instrumento puede configurarse para medir las diferencias de temperatura a valores de temperatura altos o bajos. Por el contrario, el rango de un termómetro típico de mercurio en vidrio es fijo, siendo fijado por las marcas de calibración grabadas en el vidrio o las marcas de la escala impresa.

Termómetro de Beckmann; (R) Embalse; (B) Curva
Termómetro de Beckmann; (R) Embalse; (B) Curva

Calibración

Al ajustar el termómetro, debe dejarse una cantidad suficiente de mercurio en el bulbo y el tallo para dar lecturas entre las temperaturas requeridas. Primero, el termómetro se invierte y se golpea suavemente para que el mercurio del depósito se aloje en la curva (B) del extremo de la varilla. Luego, el bulbo se calienta hasta que el mercurio del tallo se une al mercurio del depósito. El termómetro se coloca entonces en una bañera uno o dos grados por encima del límite superior de las temperaturas a medir.

Se golpea suavemente el extremo superior del tubo con el dedo, y el mercurio suspendido en la parte superior del depósito se sacudirá hacia abajo, separándolo así de la rosca en la curva (B). El termómetro se ajustará entonces para las lecturas entre las temperaturas requeridas.

Para más información «Modifikation des Thermometers für die bestimmung von Molekulargewichten und kleinen Temperaturdifferenzen»

  • Determinación del punto de fusión – método de Thiele
  • Richard Robert Ernst
  • Termometro (I)
  • Tecnicas basicas de separacion II – destilacion simple
  • Generador de Kipp

Como citar este artículo:

APA: (2019-04-01). Termómetro de Beckmann. Recuperado de https://quimicafacil.net/infografias/material-de-laboratorio/termometro-de-beckmann/

ACS: . Termómetro de Beckmann. https://quimicafacil.net/infografias/material-de-laboratorio/termometro-de-beckmann/. Fecha de consulta 2026-01-26.

IEEE: , "Termómetro de Beckmann," https://quimicafacil.net/infografias/material-de-laboratorio/termometro-de-beckmann/, fecha de consulta 2026-01-26.

Vancouver: . Termómetro de Beckmann. [Internet]. 2019-04-01 [citado 2026-01-26]. Disponible en: https://quimicafacil.net/infografias/material-de-laboratorio/termometro-de-beckmann/.

MLA: . "Termómetro de Beckmann." https://quimicafacil.net/infografias/material-de-laboratorio/termometro-de-beckmann/. 2019-04-01. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Material de laboratorio

Fraccionamiento de proteínas por solubilidad – Método de Biuret para cuantificación de proteínas

Publicado el marzo 27, 2019enero 9, 2024 Por admin
Fraccionamiento de proteínas por solubilidad – Método de Biuret para cuantificación de proteínas

Las proteínas son de especial interés en la bioquímica debido a sus múltiples roles y propiedades que exhiben en los sistemas biológicos. Las estructuras de las proteínas son muy diversas debido a la casi infinita posibilidad de combinaciones de aminoácidos que a su vez genera una gran cantidad de posibles combinaciones para las estructuras secundarias,…

Leer más “Fraccionamiento de proteínas por solubilidad – Método de Biuret para cuantificación de proteínas” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Bioquímica, Manual de laboratorio

Acrilamida

Publicado el marzo 26, 2019febrero 23, 2024 Por admin
Acrilamida

La acrilamida o amida acrílica, es un compuesto orgánico de aspecto blanco, cristalino, inodoro y soluble en una gran cantidad de solventes, desde agua hasta la mayoría de los solventes orgánicos comunes. El peligro de la acrilamida Es un compuesto altamente toxico, razón por la cual se prefiere manejar en solución a nivel industrial. Es…

Leer más “Acrilamida” »

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Compuesto de la semana

Historia de la tabla periódica VIII

Publicado el marzo 25, 2019enero 28, 2024 Por admin
Historia de la tabla periódica VIII

El descubrimiento de la mecánica cuántica ayudó a reforzar los fundamentos de la tabla periódica, llevándola más allá de una simple lista

Tiempo de lectura estimado: 3 minutos

  • La tabla periódica cuántica
  • Elementos de transición

La tabla periódica cuántica

En las décadas de 1910 y 1920, la investigación pionera en mecánica cuántica condujo a nuevos desarrollos en la teoría atómica y a pequeños cambios en la tabla periódica.

El modelo de Niels Bohr fue desarrollado durante este tiempo, y defendió la idea de configuraciones de electrones que determinan las propiedades químicas. Bohr propuso que los elementos del mismo grupo se comportaran de manera similar porque tienen configuraciones electrónicas similares, y que los gases nobles habían llenado las capas de valencia; esto constituye la base de la moderna regla del octeto.

Esta investigación llevó al físico austriaco Wolfgang Pauli a investigar la duración de los períodos en la tabla periódica de 1924. Mendeleev afirmó que había una periodicidad fija de ocho, y esperaba una correlación matemática entre el número atómico y las propiedades químicas; Pauli demostró que este no era el caso.

En su lugar, se desarrolló el principio de exclusión de Pauli. En él se afirma que ningún electrón puede coexistir en el mismo estado cuántico y se muestra, junto con las observaciones empíricas, la existencia de cuatro números cuánticos y sus consecuencias en el orden de llenado de las capas, lo que determina el orden en que se llenan las capas de electrones y explica la periodicidad de la tabla periódica.

Elementos de transición

Al químico británico Charles Bury se le atribuye el primer uso del término metal de transición en 1921 para referirse a los elementos entre los elementos del grupo principal de los grupos II y III. Explicó las propiedades químicas de los elementos de transición como consecuencia del relleno de una subestructura interior en lugar de la capa de valencia.

Esta proposición, basada en el trabajo del químico estadounidense Gilbert N. Lewis, sugirió la aparición de la subcapa d en el período 4 y la subcapa f en el período 6, alargando los períodos de 8 a 18 y luego de 18 a 32 elementos.

Para más información Evolution and understanding of the d-block elements in the periodic table

Artículos en esta serie

  1. Historia de la tabla periódica I
  2. Historia de la tabla periódica II
  3. Historia de la tabla periódica III
  4. Historia de la tabla periódica IV
  5. Historia de la tabla periódica IX
  6. Historia de la tabla periódica V
  7. Historia de la tabla periódica VI
  8. Historia de la tabla periódica VII
  9. Historia de la tabla periódica VIII
  10. Historia de la tabla periódica X
  • Historia de la tabla periódica IX
  • La computadora cuántica de Google alcanza un hito en la química
  • Las tablas periódicas de Nagayasu Nawa
Historia de la tabla periódica VIII

Como citar este artículo:

APA: (2019-03-25). Historia de la tabla periódica VIII. Recuperado de https://quimicafacil.net/infografias/historia-de-la-tabla-periodica-viii/

ACS: . Historia de la tabla periódica VIII. https://quimicafacil.net/infografias/historia-de-la-tabla-periodica-viii/. Fecha de consulta 2026-01-26.

IEEE: , "Historia de la tabla periódica VIII," https://quimicafacil.net/infografias/historia-de-la-tabla-periodica-viii/, fecha de consulta 2026-01-26.

Vancouver: . Historia de la tabla periódica VIII. [Internet]. 2019-03-25 [citado 2026-01-26]. Disponible en: https://quimicafacil.net/infografias/historia-de-la-tabla-periodica-viii/.

MLA: . "Historia de la tabla periódica VIII." https://quimicafacil.net/infografias/historia-de-la-tabla-periodica-viii/. 2019-03-25. Web.

Si tiene alguna pregunta o sugerencia, escribe a administracion@quimicafacil.net, o visita Como citar quimicafacil.net

Comparte esto:

  • Haz clic para compartir en WhatsApp (Se abre en una ventana nueva) WhatsApp
  • Haz clic para compartir en Telegram (Se abre en una ventana nueva) Telegram
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva) Facebook
  • Haz clic para compartir en X (Se abre en una ventana nueva) X
  • Haz clic para compartir en Pinterest (Se abre en una ventana nueva) Pinterest
  • Haz clic para compartir en LinkedIn (Se abre en una ventana nueva) LinkedIn
Historia de la tabla periódica, Infografías, Tablas Periódicas

Paginación de entradas

Anteriores 1 … 114 115 116 … 126 Siguientes
Anuncio

Buscar

Anuncio

Tabla periódica interactiva

Anuncio

Reciente

  • Claude Silbert Hudson
  • Reducción de una Cetona a un Alcohol Secundario
  • Aetoxonotoxina
  • Jack Halpern
  • Tabla Periódica de los Elementos 2026
Anuncio

Links de interés

  • Tabla periódica de los elementos - 2026
  • Calendario Químico - 2026
  • Papel hexagonal para química orgánica
  • Hexagonal paper – Organic Chemistry Notebook
  • Cuaderno de laboratorio para química orgánica
  • Tabla Periódica Etimológica
Anuncio

Índices de artículos

  • Biografías
  • Ciencia y arte
  • Compuesto de la semana
  • Manual de laboratorio
  • Material de laboratorio en química y ciencia
  • Notas de química
  • Tabla Periódica Etimológica
  • Técnicas de laboratorio
Anuncio

Top de descargas

  • Tabla periódica de los elementos en español - actualizada 2022 - PDF (2009618 descargas )
  • Periodic Table of the Elements in English - updated 2022 - PDF (1903248 descargas )
  • Tabla periódica de los elementos en blanco - PDF (1770219 descargas )
  • Tabla periódica de los elementos en español - actualizada 2022 - PNG (1659363 descargas )
  • Tabla periódica actualizada 2023 - color PDF (1592765 descargas )
  • Tabla periódica de los elementos 2024 - Color (1448723 descargas )
Anuncio

Webs amigas

  • FiQuiPedia.es
Anuncio

Artículos populares del mes

Anuncio

Algunos derechos reservados © 2024 Quimicafacil.net.

Funciona con Tema PressBook para WordPress

 

Cargando comentarios...